Many thanks to...

We must thank the following companies for kindly providing hardware for our test bed:

Thank you to OCZ for providing us with 1250W Gold Power Supplies.
Thank you to G.Skill for providing us with memory kits.
Thank you to Corsair for providing us with an AX1200i PSU, Corsair H80i CLC and 16GB 2400C10 memory.
Thank you to ASUS for providing us with the AMD GPUs and some IO Testing kit.
Thank you to ECS for providing us with the NVIDIA GPUs.
Thank you to Rosewill for providing us with the BlackHawk Ultra, and 1600W Hercules PSU for extreme dual CPU + quad GPU testing, and RK-9100 keyboards.
Thank you to ASRock for providing us with the 802.11ac wireless router for testing.

Test Setup

Processor AMD Trinity A10-6800K APU
2 Modules, 4 Threads, 4.1 GHz (4.4 GHz Turbo)
Motherboards GIGABYTE F2A85XN-WiFi
Cooling Corsair H80i
Thermalright TRUE Copper
Power Supply OCZ 1250W Gold ZX Series
Corsair AX1200i Platinum PSU
Memory GSkill TridentX 4x4 GB DDR3-2400 10-12-12 Kit
Corsair Vengeance Pro 2x8 GB DDR3 2400 10-12-12 Kit
Memory Settings XMP (2400 10-12-12)
Video Cards ASUS HD7970 3GB
ECS GTX 580 1536MB
Video Drivers Catalyst 13.1
NVIDIA Drivers 310.90 WHQL
Hard Drive OCZ Vertex 3 256GB
Optical Drive LG GH22NS50
Case Open Test Bed
Operating System Windows 7 64-bit
USB 2/3 Testing OCZ Vertex 3 240GB with SATA->USB Adaptor
WiFi Testing D-Link DIR-865L 802.11ac Dual Band Router

As this is our first review using a Richland processor on FM2, and our first FM2 on mini-ITX, various results will be taken from our previous reviews featuring Trinity processors and/or mini-ITX models.

Power Consumption

Power consumption was tested on the system as a whole with a wall meter connected to the OCZ 1250W power supply, while in a dual 7970 GPU configuration.  This power supply is Gold rated, and as I am in the UK on a 230-240 V supply, leads to ~75% efficiency > 50W, and 90%+ efficiency at 250W, which is suitable for both idle and multi-GPU loading.  This method of power reading allows us to compare the power management of the UEFI and the board to supply components with power under load, and includes typical PSU losses due to efficiency.  These are the real world values that consumers may expect from a typical system (minus the monitor) using this motherboard.

 

While this method for power measurement may not be ideal, and you feel these numbers are not representative due to the high wattage power supply being used (we use the same PSU to remain consistent over a series of reviews, and the fact that some boards on our test bed get tested with three or four high powered GPUs), the important point to take away is the relationship between the numbers.  These boards are all under the same conditions, and thus the differences between them should be easy to spot.

Power Consumption

Compared to the other FM2 motherboards we have tested, the FM2 ITX seems a little on the high side, even though all processors in there are rated at 100W (Trinity and Richland). 

Windows 7 POST Time

Different motherboards have different POST sequences before an operating system is initialized.  A lot of this is dependent on the board itself, and POST boot time is determined by the controllers on board (and the sequence of how those extras are organized).  As part of our testing, we are now going to look at the POST Boot Time - this is the time from pressing the ON button on the computer to when Windows 7 starts loading.  (We discount Windows loading as it is highly variable given Windows specific features.)  These results are subject to human error, so please allow +/- 1 second in these results.

POST (Power-On Self-Test) Time

Surprisingly enough, we get a sizable ~1 second boost when stripping down the BIOS for booting, and the GIGABYTE inches near a good 12 second target.

GIGABYTE F2A85XN-WiFi In The Box, Overclocking System Benchmarks
Comments Locked

31 Comments

View All Comments

  • DanNeely - Wednesday, August 21, 2013 - link

    Every time I look at the ultra-crowded layout of an mITX board I'm reminded of how dated the main 24 ATX power plug is and how much it would benefit from being replaced. While they were king in the p1 era with the CPU and PCI busses running on 3.3v directly and most other chips on the board designed for 5V; 3.3 and 5V are barely used at all any more but have 3 and 5 wires in the 24pin cable; while -5V has been removed entirely from modern versions of the spec. Dropping to a single 3.3/5v wire and removing the -5v one would free 7 pins directly; and with only 4 power pins left in the legacy connector (3.3, 5, 2 x 12) there's no need for 8 ground pins either. Probably we could drop 5 of them.

    This would allow for a successor cable that's only half as large; freeing space on crowded boards and replacing the 24wire cable with a 12 wire one that would be much less of a pain to route in a crowded case. I'm inclined to keep the CPUs 12V separate just to avoid trading one overly fat wire bundle for another and because AIUI the other half of why the CPUs 12V comes in separately is to get it as close to the socket as possible without crowding the area with everything else.
  • EnzoFX - Wednesday, August 21, 2013 - link

    Yes, I've been saying this since ITX was taking hold. It is absurd how held back we are by entrenched standards. It's not in their business to reinvent.
  • Jambe - Thursday, August 22, 2013 - link

    I enjoyed this astute observation-comment.

    Right on.

    That is all.
  • cjs150 - Friday, August 23, 2013 - link

    Totally agree on the ATX cable.

    While we are at why do motherboards virtually never come with the ATX connector being at right angles rather than straight up - we get that for SATA connectors and it seriously improves cable management
  • flemeister - Friday, August 23, 2013 - link

    Not such a good idea for mITX boards, when you might expect to install them in small cases such as the Antec ISK110 or Minibox M350. Right-angled ATX power or sata ports would be blocked off.

    How about RAM though? Why not use SO-DIMMs that are about 60% the size of regular DIMMs? They're readily available, and are priced the same or very close to the price of regular size RAM. Assuming two sticks of RAM, that would save even more room on the motherboard than a redesign of the 24-pin connector. Just look at the Asus P8H67-I Deluxe for an example. :)
  • DanNeely - Friday, August 23, 2013 - link

    It's not just mITX boards that would have a problem with right angled ATX power sockets. Unless the PSU also included a right angle 24pin cable it would be problematic in any case that uses cable management holes to route the cables behind the mobo tray. Trying to make a 90* bend in that cramped a space would put a lot of torque on the socket; a big ugly loop sticking up allows for a much looser and less stressful bend.
  • DanNeely - Friday, August 23, 2013 - link

    For dimm sizes I think it's mostly a capacity issue. For more modest builds it probably doesn't matter; but higher capacities tend to come out a year or two sooner in full size dimms because you can jam more chips onto them if need be. Currently DDR3 dimms and sodimms both max out at 8GB for desktops; but if you're willing to pay the price premium server ram is available in up to 32GB dimms.
  • flemeister - Saturday, August 24, 2013 - link

    True, but how about SO-DIMMs on a budget Intel H81/B85 or AMD A55/A75 board? Or one of the low-power Intel Atom or AMD Brazos ITX boards? Or even a budget Z87 ITX board, to avoid the need for a vertically mounted VRM daughterboard (unless that's actually cheaper to do)? More space for surface mounted components, and probably cheaper to make the board? Could also mean less PCB layers?
  • DanNeely - Saturday, August 24, 2013 - link

    You're only saving 36 pins/dimm (204 vs 240); so there's no where near enough savings to drop a PCB layer. Beyond that I'd guess that since they do offer some models with SoDIMM slots that they just don't sell as well. If I had to guesses why it'd be that people are more likely to have spare DIMMs laying around than spare SoDIMMs; meaning that the total build cost is lower since the ram is free and/or the cost savings from larger DIMMs are enough to drive shoppers.

    The one configuration I could see driving some enthusiast/gamer consumption of SoDIMM based mITX boards would be 4 slots instead of only 2 for 32GB max instead of 16; is conspicuous by its absence.
  • Hyoyeon - Wednesday, August 21, 2013 - link

    You mention DisplayPort several times, but this board does not have a DP connector. Where did this come from?

Log in

Don't have an account? Sign up now